If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+11.2x-5.6=0
a = 1; b = 11.2; c = -5.6;
Δ = b2-4ac
Δ = 11.22-4·1·(-5.6)
Δ = 147.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11.2)-\sqrt{147.84}}{2*1}=\frac{-11.2-\sqrt{147.84}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11.2)+\sqrt{147.84}}{2*1}=\frac{-11.2+\sqrt{147.84}}{2} $
| 9+x/22=1 | | -6-10n=-146 | | 4+n/2=12 | | -9(b-5)=45 | | -9(b-5=45 | | -(r-7)=26 | | -(-1+k)=7 | | a/18+10=9 | | 2=x/16 | | 30=15+b | | 14x+10x=45 | | 9x^2+2–4=0 | | 6×n÷11=7 | | 3(x-8)=80 | | 15(x+2)+135=180 | | 18x-15=9x+78 | | 165+15x=180 | | (x+9)/14=(1/7)+((x-3)/8) | | w/5+1.2=-11.3 | | 4h−6=10 | | (s+1)/(4)=(4)/(8) | | 12x+160=400 | | -13-14g=-13g | | 13v-39=9+v | | 3(x)^1.2=8 | | 10k+22=22 | | x+0.03x=6800000 | | 12v+7=13v-12-2v | | 2(2x-4)=6(x+6) | | -8c-20=-11c+19 | | 6k+(3*10-8)=(2*2)k+22 | | 5b+2b=29 |